

Journal of Alloys and Compounds 216 (1994) 105-112

Die Kristallstrukturen der Erdalkalialuminate $Ba_3Al_2O_6$ und $Ba_{2,33}Ca_{0,67}Al_2O_6$ ($\equiv Ba_7Ca_2Al_6O_{18}$)

Leonhard Walz^{a,*}, Martina Heinau^a, Birgit Nick^a, Jan Curda^b

*Daimler-Benz AG., Forschungszentrum Ulm, F1W/F, Wilhelm-Runge-Str. 11, D-89081 Ulm, Deutschland

bMax-Planck-Institut für Festkörperforschung, Heisenbergstr. 1, D-70569 Stuttgart, Deutschland

Eingegangen am 10. April 1994

Abstract

Single crystals of $Ba_3Al_2O_6$ (1) and $Ba_{2.33}Ca_{0.67}Al_2O_6$ (2) could be obtained by reacting the alkaline earth metal carbonates with Al_2O_3 at 1500 °C and their crystal structures were determined using single-crystal X-ray diffractometry data. Despite the cubic lattice constants found for both compounds (1, 16.5068(5) Å, 2, 16.180(1) Å), their structure is shown to be orthorhombic. It is closely related to the perovskite structure. The principal structural element is the $Al_{12}O_{36}$ ring built up by 12 distorted corner-sharing AlO_4 tetrahedra arranged similarly to the sulphur atoms in S_{12} . The Ca atoms in 2 occupy fully four of the 18 alkaline earth metal positions in 1. No analogy to the mixed occupation realized in $(Sr,Ca)_3Al_2O_6$ is observed.

Zusammenfassung

Einkristalle von Ba₃Al₂O₆ (1) und Ba_{2.33}Ca_{0.67}Al₂O₆ (2) konnten durch Umsetzung der Erdalkalikarbonate mit Al₂O₃ bei 1500 °C erhalten werden; ihre Kristallstrukturen wurden mit Einkristalldiffraktometerröntgendaten bestimmt. Trotz der für beide Verbindungen gefundenen kubischen Gitterkonstanten (1, 16.5068(5) Å; 2, 16.180(1) Å) zeigt sich, daß deren Struktur orthorhombisch ist. Sie zeigt eine nahe Verwandschaft zur Perowskitstruktur. Das grundlegende Strukturelement ist der Al₁₂O₃₆-Ring, der aus 12 verzerrten, eckenverknüpften AlO₄-Tetraedern aufgebaut ist, die den Schwefelatomen in S₁₂ vergleichbar angeordnet sind. Die Ca-Atome in 2 ersetzen vier der achtzehn Erdalkalimetallpositionen in 1 vollständig. Eine Analogie zur gemischten Besetzung wie im Falle des (Sr,Ca)₃Al₂O₆ wird nicht beobachtet.

Keywords: Single crystals; Aluminates; Solid solutions

1. Einleitung

Die Existenz der Erdalkalialuminate des Typs $EA_3Al_2O_6$ (EA = Ca, Sr, Ba) ist schon länger bekannt. Mondal und Jeffery [1] veröffentlichten 1975 die Kristallstruktur der Verbindung $Ca_3Al_2O_6$, die in der kubischen Raumgruppe $Pa\bar{3}$ kristallisiert. Die Struktur ist eine Variante der Perowskitstruktur, in der neben der nur unvollständigen Besetzung der $4\times4\times4$ Perowskitsubzellen mit Ca-Atomen auch Punktlagen besetzt werden, die formal als Ecken der kleinen Perowskitzellen zu betrachten sind. Nur so können statt der 64 Subzellenzentren 72 Teilchen untergebracht werden. Die zur Vervollständigung der Zusammensetzung notwendigen 48 Al- und 144 O-Atome sind in acht, aus jeweils sechs eckenverknüpften AlO₄-Tetraedern zu-

sammengesetzten Al₆O₁₈-Ringen angeordnet. Durch deren Zentren verlaufen die Raumdiagonalen der großen kubischen Elementarzelle, was kristallographisch nur mit einer Sesselkonformation der Sechsringe realisiert werden kann. Die Polyederdarstellung in Abb. 1 verdeutlicht diese Anordnung. Bereits 1976 [2] wurde die Sr-Verbindung als isotyp erkannt und deren Struktur aus Einkristallröntgendaten bestimmt. Sie wurde 1992 erneut von Chakoumakos u.a. [3] mit Neutronenpulverdaten verfeinert.

Schon in Lit. [2] wird von der erfolgreichen Darstellung der Ba-Verbindung berichtet. Guinier-Aufnahmen konnten mit einer kubischen Elementarzelle $(a_0 = 16.49 \text{ Å})$ vollständig indiziert werden, was durch Film- und Diffraktometermessungen an Einkristallen bestätigt wurde. Der Reflexdatensatz erfüllte bezüglich Symmetrie und Auslöschungen vollständig die Raumgruppe $Pa\bar{3}$. Es gelang aber nicht, die Struktur des

^{*}Korrespondenzautor.

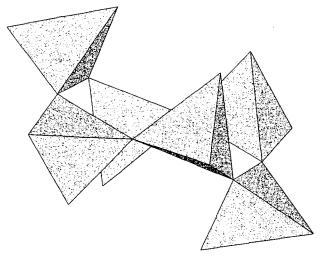


Abb. 1. Al_6O_{18} -Ring in $Ca_3Al_2O_6$ und in $Sr_3Al_2O_6$ (Polyederdarstellung).

Ba₃Al₂O₆ zu bestimmen, der Versuch, eine Verfeinerung isotyp zu den Ca- und Sr-Verbindungen durchzuführen, schlug fehl. Auch uns gelang es in der Folgezeit nicht, mit neuen Einkristalldatensätzen eine befriedigende Strukturaufklärung zu erreichen. 1987 veröffentlichten schließlich Antipov u.a. [4] die Ergebnisse einer Strukturanalyse durchgeführt in der Raumgruppe Pā3. Die dort mitgeteilten Strukturparameter wiesen aber etliche Ungereimtheiten auf und waren als Startparameter für die Verfeinerung mit unseren eigenen Datensätzen völlig unbrauchbar.

Bei unseren Untersuchungen zur gezielten Veränderung von Substratgitterkonstanten [5-7], befassten wir uns erneut mit den Erdalkalialuminaten der Zusammensetzung EA₃Al₂O₆ (EA≡Ca, Sr, Ba). Dabei beobachteten wir im System Sr_{3-x}Ca_xAl₂O₆ lückenlose Mischbarkeit. Hierüber werden wir in Kürze berichten [8]. Dies ließ sich beim analogen Ba/Ca-System nicht realisieren. Statt dessen beobachteten wir, daß im System Ba₃₋, Ca₂, Al₂O₆ das Reflexlinienmuster des Ba₃Al₂O₆ mit zunehmendem Ca-Gehalt sich nur bis $x \approx 0.9$ aufweitet, was auf einen partiellen Ersatz der Ba-Atome durch kleinere Ca-Atome schließen läßt. Beim Versuch, einen höheren Ca-Gehalt zu erzielen, bleiben die d-Werte konstant und es wird das hexagonal kristallisierende BaAl₂O₄ als Zweitphase beobachtet. Erhöht man den Ca-Anteil noch weiter, so dünnt das aufgeweitete Linienmuster des Ba₃Al₂O₆ zunehmend aus und die Linien der bekannten Ca₃Al₂O₆-Phase erscheinen, deren d-Werte aber keine Funktion des noch verbleibenden Ba-Gehalts sind. Daraus läßt sich schließen, daß zwar in das Gitter des Ba₃Al₂O₆ bis zu einem gewissen Grad Ca eingebaut werden kann, daß aber der Ba-Einbau in Ca₃Al₂O₆ unterbleibt.

Aus dieser Erkenntnis heraus leitete sich unser weiteres Vorgehen ab: Wenn die Strukturlösung des $Ba_3Al_2O_6$ bisher wegen der zu erwartenden, extrem hohen Pseudosymmetrie des Gitters fehlschlug – starke Reflexe existieren nur für h, k, l=4n – dann könnte in einer Ba-Ca-Mischphase, bedingt durch die stark unterschiedliche Streukraft der beiden Erdalkaliatome,

Tabelle 1 Experimentelle Daten und Ergebnisse der Kristallstrukturbestimmung für Ba₃Al₂O₆ (1) (Standardabweichungen in Klammern)

```
Molmasse (g mol-1)
                                                                      561 98
                                                                     P2<sub>1</sub>2<sub>1</sub>2<sub>1</sub> (Nr. 19)
Raumgruppe
Gitterkonstanten (Å)
                                                                     a = b = c = 16.5068(5)
V(Å^3)
                                                                     4497.7(2)
                                                                     24
\mathbf{Z}
D_{\rm calc} (g cm<sup>-3</sup>)
                                                                      4.98
                                                                      5808
F(000)
\mu_{Mo K\alpha} (mm^{-1})
                                                                      15.8
Verwendete Wellenlänge (Å)
                                                                      0.71073
                                                                      Graphit (002)
Monochromator
Θ-Bereich für die Datensammlung (°)
                                                                      3≤2Θ≤50
h, k, l-Breich
                                                                      0 \rightarrow 19
                                                                      Stoe-Stadi-4
Diffraktometer
                                                                      \omega:2\Theta=1:1
Scan-Modus
Scan-Breite (°)
                                                                      1.5
Min./max. Meßzeit pro Reflex (s)
                                                                      30/150
Korrekturen
                                                                      Lorentz/Polarisation/emp. Absorption/Extinktion
Anzahl gemessener Reflexe
                                                                      4224
Anzahl symmetrieunabhängiger Reflexe
                                                                      4220
                                                                     310
Anzahl der Parameter
                                                                      0.0554, 0.0981
Gütefaktor (I > 2\sigma(I)) R_1, wR_2
wR2 (alle Reflexe)
                                                                     0.1373
Goodness of fit
                                                                      0.969
                                                                      1/\sigma^2(F_o^2) + (0.0526P)^2 mit P = (F_o^2 + 2F_c^2)/3
Wichtungsschema
                                                                      0.000117(8)
Extinktion
Min./max. Restelektronendichte (e Å<sup>-3</sup>)
                                                                      -1.96/2.02
```

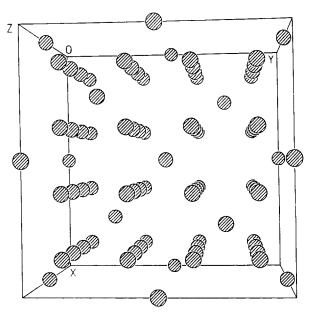


Abb. 2. Idealisierte Ba-Verteilung in 1. Die Viererstränge verdeutlichen das Perowskitsubzellenmuster.

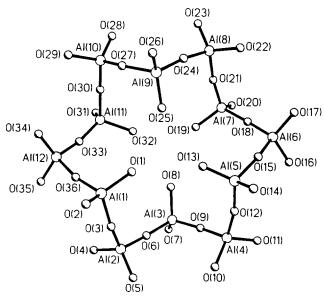


Abb. 3. Al₁₂O₃₆-Ringe in 1 und 2 in Moleküldarstellung.

diese Pseudosymmetrie reduziert sein. Wie im weiteren gezeigt wird, ist dies auch tatsächlich der Fall. Denn trotz der weiterhin streng kubischen Metrik des Ba_{2.33}Ca_{0.67}Al₂O₆ (2) waren für diese Verbindung starke Zweifel an der kubischen Symmetrie angebracht.

2. Experimentelles

2.1. Darstellung der Proben

Zur Synthese aller Verbindungen des Typs Ba_{3-x}Ca_xAl₂O₆ (x in Schritten von 0.3) wurden die Erdalkalikarbonate (Aldrich, 99.99%) sowie Al₂O₃

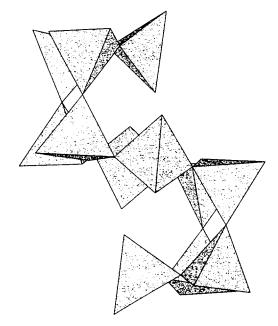


Abb. 4. Al₁₂O₃₆-Ringe in 1 und 2 in Polyederdarstellung.

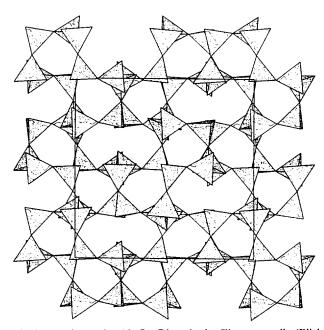


Abb. 5. Anordnung der Al₁₂O₃₆-Ringe in der Elementarzelle (Blickrichtung [100]).

(Flucka, 99.99%) verwendet. Innig verriebene Gemenge (Kugelmühle, Mahldauer mindestens 30 Min) wurden in Korundtiegeln an Luft auf 1400 °C erhitzt und bei dieser Temperatur mehrere Stunden belassen. Erneutes Zerkleinern in der Kugelmühle und Sintern bei 1400 °C wurden so oft wiederholt bis Pulverdiffraktogramme keine Veränderungen mehr zeigten. Indizierung der Reflexe und Verfeinerung der Gitterkonstanten der reinen Phase Ba₃Al₂O₆ waren in vollem Einklang mit den Ergebnissen bei [2].

Einkristalle von 1 und 2 wurden aus den Pulverproben mit den Nominalzusammensetzungen x=0 und 0.9

Tabelle 2 Atomkoordinaten ($\times 10^4$) und äquivalente isotrope Auslenkungsparameter ($\mathring{A}^2 \times 10^3$) für 1. U(eq) ist als $\frac{1}{8}$ des orthogonalisierten U_{ij} -Tensors definiert. Die Al- und die O-Atome haben jeweils einen gemeinsamen isotropen Auslenkungsparameter

Ba(2) 3559(3) 3644(3) 3551(3) 13(1) Ba(3) 5030(6) 5022(6) 4990(7) 12(1) Ba(5) 7455(2) 7544(3) 7539(3) 21(1) Ba(6) 8853(3) 8843(3) 9008(3) 11(1) Ba(7) 1154(3) 5997(3) 3854(3) 12(1) Ba(8) 6248(3) 3757(3) 1250(3) 10(1) Ba(9) 4008(3) 1145(3) 6154(3) 11(1) Ba(10) 8839(3) 3971(3) 6141(4) 13(1) Ba(11) 3733(3) 6272(3) 8736(4) 16(1) Ba(12) 6036(3) 8854(3) 3838(4) 10(1) Ba(13) 1327(3) 3692(3) 8770(4) 16(1) Ba(14) 3765(3) 8678(3) 1312(4) 15(1) Ba(15) 8773(3) 1225(3) 3777(3) 13(4) Ba(16) 1410(3) 8583(3) 6412(3) 16(1) Ba(17) 8555(3) 6440(3) 1361(3) 16(1) Ba(18) 6360(3) 1451(3) 8561(3) 16(1) Ba(18) 6360(3) 1451(3) 2435(12) 5(1) Al(2) 61(10) 7330(15) 2657(18) 5(1) Al(3) 262(11) 7504(10) 4776(12) 5(1) Al(4) 2316(14) 4932(10) 7333(15) 5(1) Al(6) 2316(14) 4932(10) 7333(15) 5(1) Al(10) -1390(15) 2655(16) 4937(11) 5(1) Al(10) -2399(15) 2655(16) 4937(11) 5(1) Al(10) -2399(15) 2655(16) 4937(11) 5(1) Al(11) -2536(11) 4776(12) 4759(14) 5(1) Al(11) -2356(11) 4776(12) 4759(14) 5(1) Al(11) -2356(14) 4979(10) 2717(16) 5(1) Al(11) -2366(14) 4979(10) 2717(16) 5(1) Al(12) -2365(14) 4979(10) 2717(16) 5(1) Al(11) -2366(14) 4979(10) 2717(16) 5(1) O(1) 167(29) 4824(28) 3406(34) 11(1) C(2) 204(24) 4795(26) 1563(29) 11(1) O(3) 69(21) 6266(29) 2422(25) 11(1) O(4) -917(22) 7722(22) 2389(25) 11(1) O(5) 924(23) 7704(26) 2245(25) 11(1) O(6) 158(23) 7449(20) 3682(26) 11(1) O(7) -317(20) 8451(23) 513(21) 11(2) O(11) 2803(20) 7760(22) 5832(23) 11(1) O(11) 2803(20) 7760(22) 5832(23) 11(1) O(12) 2532(28) 7495(28) 5005(22) 11(1) O(13) 1629(29) 4863(27) 748(22) 11(1) O(14) 3487(21) 4775(22) 7722(21) 2389(25) 11(1) O(15) 2599(22) 4900(21) 6221(29) 11(1) O(16) 2680(23) 5915(24) 7659(27) 11(1) O(17) 2801(22) 4069(22) 7731(25) 11(1) O(18) 1232(8) 7495(9) 7450(6) 11(1) O(20) -139(28) 5126(27) 6611(34) 11(1) O(25) 159(24) 3416(28) 4904(23) 11(1) O(26) 136(18) 1583(25)	Atom	x	у	z	U(eq)
Ba(3)	Ba(1)		1159(3)		13(1)
Ba(4) 630s(3) 6232(3) 6322(4) 16(1) Ba(5) 7455(2) 7544(3) 7539(3) 21(1) Ba(6) 8853(3) 8843(3) 9008(3) 11(1) Ba(7) 1154(3) 5997(3) 3854(3) 12(1) Ba(8) 6248(3) 3757(3) 1250(3) 10(1) Ba(9) 4008(3) 1145(3) 6154(3) 11(1) Ba(10) 8839(3) 3971(3) 6141(4) 13(1) Ba(11) 3733(3) 6272(3) 8736(4) 16(1) Ba(12) 6036(3) 8854(3) 3838(4) 10(1) Ba(13) 1327(3) 3692(3) 8770(4) 16(1) Ba(14) 3765(3) 8678(3) 1312(4) 15(1) Ba(15) 8773(3) 1225(3) 3774(3) 13(1) Ba(16) 1410(3) 8583(3) 6412(3) 16(1) Ba(17) 8555(3) 6440(3) 1361(3) 16(1) Ba(18) 6360(3) 1451(3) 8561(3) 16(1) Ba(18) 6360(3) 1451(3) 8561(3) 16(1) Al(1) -153(12) 5147(13) 2435(12) 5(1) Al(2) 61(10) 7330(15) 2657(18) 5(1) Al(3) 262(11) 7504(10) 4776(12) 5(1) Al(6) 2316(15) 7304(17) 4986(10) 5(1) Al(6) 2316(14) 4932(10) 7333(15) 5(1) Al(10) -2309(15) 2655(16) 4937(11) 5(1) Al(10) -2309(15) 2655(16) 4937(11) 5(1) Al(10) -2309(15) 2655(16) 4937(11) 5(1) Al(10) -2306(14) 4795(2) 1563(29) 11(1) O(1) 167(29) 4824(28) 3406(34) 11(1) 10(1) 20(2) 204(24) 4795(26) 1563(29) 11(1) O(1) 167(29) 4824(28) 3406(34) 11(1) 10(1) 20(3) 69(21) 6266(29) 2422(25) 11(1) O(10) 1232(28) 7499(20) 7332(25) 11(1) O(11) 2803(20) 7704(26) 2245(25) 11(1) O(10) 12803(20) 7704(26) 2245(25) 11(1) O(10) 12803(20) 7704(26) 2245(25) 11(1) O(10) 12803(20) 7704(26) 2245(25) 11(1) O(11) 2803(20) 7704(26) 2245(25) 11(1) O(11) 2803(20) 7704(26) 2245(25) 11(1) O(11) 2803(20) 7704(26) 2245(25) 11(1) O(13) 69(21) 6266(29) 2422(25) 11(1) O(14) 3487(21) 4779(22) 7822(22) 2389(25) 11(1) O(19) 1232(28) 7499(20) 3682(26) 11(1) O(10) 2625(23) 7003(24) 4009(22) 11(1) O(11) 2803(20) 7704(26) 2245(25) 11(1) O(11) 2803(20) 7704(26) 2245(25) 11(1) O(12) 2533(21) 6249(31) 5126(28) 11(1) O(13) 1629(29) 4863(27) 7516(24) 11(1) O(14) 3487(21) 4772(23) 4822(23) 11(1) O(15) 2599(22) 4900(21) 621(29) 11(1) O(10) -139(28) 5126(27) 6611(34) 11(1) O(25) 159(24) 44069(22) 7731(25) 11(1) O(19) -139(28) 5126(27) 6611(34) 11(1) O(26) 136(18) 1583(25) 4773(24) 11(1) O(27) -1299(28) 52485(26) 4871(22) 11(1) O(26) 136(18) 1583(25) 4773(24) 11(1)	Ba(2)	3559(3)	3644(3)	3551(3)	
Ba(5) 7455(2) 7544(3) 7539(3) 21(1) Ba(6) 8853(3) 8843(3) 9008(3) 11(1) Ba(6) 6248(3) 3757(3) 1250(3) 10(1) Ba(9) 4008(3) 1145(3) 6154(3) 11(1) Ba(10) 8839(3) 3971(3) 6141(4) 13(1) Ba(11) 3733(3) 6272(3) 8736(4) 16(1) Ba(12) 6036(3) 8854(3) 3838(4) 10(1) Ba(13) 1327(3) 3692(3) 8770(4) 16(1) Ba(14) 3765(3) 8678(3) 1312(4) 15(1) Ba(15) 8773(3) 1225(3) 3774(3) 13(1) Ba(16) 1410(3) 8583(3) 6412(3) 16(1) Ba(17) 8555(3) 6440(3) 1361(3) 16(1) Ba(18) 6360(3) 1451(3) 8561(3) 16(1) Ba(18) 6360(3) 1451(3) 8561(3) 16(1) Ba(18) 6360(3) 1451(3) 8561(3) 16(1) Al(1) -153(12) 5147(13) 2435(12) 5(1) Al(2) 61(10) 7330(15) 2657(18) 5(1) Al(4) 2316(15) 7304(17) 4986(10) 5(1) Al(5) 2251(12) 5152(13) 5175(15) 5(1) Al(6) 2316(14) 4932(10) 7333(15) 5(1) Al(7) 204(11) 4745(12) 7520(11) 5(1) Al(8) -440(1) 2701(15) 7312(18) 5(1) Al(10) -2309(15) 2655(16) 4937(11) 5(1) Al(11) -2536(11) 4776(12) 4759(14) 5(1) Al(11) -2536(11) 4776(12) 4759(14) 5(1) Al(11) -2305(14) 4979(10) 2717(16) 5(1) Al(11) -2536(11) 4776(12) 4759(14) 5(1) Al(11) -2305(14) 4979(10) 2717(16) 5(1) O(1) 167(29) 4824(28) 3406(34) 11(1) O(2) 204(24) 4795(26) 1563(29) 11(1) O(6) 158(23) 7404(26) 2245(25) 11(1) O(6) 158(23) 7405(26) 2582(25) 11(1) O(10) 2625(23) 7603(24) 4009(22) 11(1) O(11) 2803(20) 7760(22) 5832(23) 11(1) O(10) 2625(23) 7603(24) 4009(22) 11(1) O(11) 2803(20) 7760(22) 5832(23) 11(1) O(11) 2803(20) 7760(22) 5832(23) 11(1) O(11) 1803(20) 7760(22) 5832(23) 11(1) O(13) 1629(29) 4863(27) 4872(26) 11(1) O(14) 3487(21) 4772(23) 4822(23) 11(1) O(15) 2599(21) 4900(21) 6211(23) 11(1) O(25) 159(24) 3416(28) 490	Ba(3)				
Ba(6) 8853(3) 8843(3) 9008(3) 11(1) Ba(7) 1154(3) 5997(3) 3854(3) 12(1) Ba(8) 6248(3) 3757(3) 1250(3) 10(1) Ba(9) 4008(3) 1145(3) 6154(3) 11(1) Ba(10) 8839(3) 3971(3) 6141(4) 13(1) Ba(11) 3733(3) 6272(3) 8736(4) 16(1) Ba(12) 6036(3) 8854(3) 3838(4) 10(1) Ba(12) 6036(3) 8678(3) 1312(4) 15(1) Ba(15) 8773(3) 1225(3) 3774(3) 13(1) Ba(15) 8773(3) 1225(3) 3774(3) 13(1) Ba(16) 1410(3) 8583(3) 6412(3) 16(1) Ba(16) 1410(3) 8583(3) 6412(3) 16(1) Ba(17) 8555(3) 6440(3) 1361(3) 16(1) Ba(17) 8555(3) 6440(3) 1361(3) 16(1) Ba(17) 8556(3) 1451	Ba(4)				
Ba(7) 1154(3) 5997(3) 3854(3) 12(1) Ba(8) 6248(3) 3757(3) 1250(3) 10(1) Ba(9) 4008(3) 1145(3) 6154(3) 11(1) Ba(10) 8839(3) 3971(3) 6141(4) 13(1) Ba(11) 3733(3) 6272(3) 8736(4) 16(1) Ba(12) 6036(3) 8854(3) 3838(4) 10(1) Ba(13) 1327(3) 3692(3) 8770(4) 16(1) Ba(14) 3765(3) 8678(3) 1312(4) 15(1) Ba(15) 8773(3) 1225(3) 3774(3) 13(1) Ba(16) 1410(3) 8583(3) 6412(3) 16(1) Ba(17) 8555(3) 6440(3) 1361(3) 16(1) Ba(18) 6360(3) 1451(3) 8561(3) 16(1) Ba(18) 6360(3) 1451(3) 8561(3) 16(1) Ba(18) 6360(3) 1451(3) 8561(3) 16(1) Al(1) -153(12) 5147(13) 2435(12) 5(1) Al(2) 61(10) 7330(15) 2657(18) 5(1) Al(3) 262(11) 7504(10) 4776(12) 5(1) Al(4) 2316(15) 7304(17) 4986(10) 5(1) Al(5) 2551(12) 5152(13) 5175(15) 5(1) Al(6) 2316(14) 4932(10) 7333(15) 5(1) Al(7) 204(11) 4745(12) 7520(11) 5(1) Al(10) -2309(15) 2655(16) 4937(11) 5(1) Al(10) -2309(15) 2655(16) 4937(11) 5(1) Al(10) -2309(15) 2655(16) 4937(11) 5(1) Al(11) -2536(11) 4776(12) 4759(14) 5(1) O(1) 167(29) 4824(28) 3406(34) 11(1) O(2) 204(24) 4795(26) 1563(29) 11(1) O(3) 69(21) 6266(29) 2422(25) 11(1) O(4) -917(22) 7722(22) 2389(25) 11(1) O(5) 924(23) 7704(26) 2245(25) 11(1) O(6) 158(23) 7409(20) 3682(26) 11(1) O(10) 2625(23) 7603(24) 4009(22) 11(1) O(10) 2625(23) 7603(24) 4009(22) 11(1) O(11) 2803(20) 7760(22) 5832(23) 11(1) O(10) 2625(23) 7603(24) 4009(22) 11(1) O(11) 2803(20) 7760(22) 5832(23) 11(1) O(11) 2803(20) 7760(22) 5832(23) 11(1) O(11) 2803(20) 7760(22) 5832(23) 11(1) O(10) 1262(20) 4482(21) 512(29) 11(1) O(11) -319(28) 512(27) 6611(34) 11(1) O(20) -135(22) 5260(27) 8434(29) 11(1) O(11) -139(28) 512(27) 6611(34) 11(1) O(20) -135(22) 5260(27) 8434(29) 11(1) O(10) 1262(20) 4900(21) 6221(29) 11(1) O(11) -130(20) 1775(29) 4803(20) 775(20) 1581(27) 11(1) O(10) 2625(23) 7603(24) 4009(22) 11(1) O(11) -130(20) 375(22) 5260(27) 8434(29) 11(1) O(11) -130(20) -135(22) 5260(27) 8434(29) 11(1) O(20) -135(22) 5260(27) 8434(29) 11(1	Ba(5)	7455(2)	7544(3)	7539(3)	21(1)
Ba(8) 6248(3) 3757(3) 1250(3) 10(1) Ba(9) 4008(3) 1145(3) 6154(3) 11(1) Ba(10) 8839(3) 3971(3) 6141(4) 13(1) Ba(11) 3733(3) 6272(3) 8736(4) 16(1) Ba(12) 6036(3) 8854(3) 3838(4) 10(1) Ba(13) 1327(3) 3692(3) 8770(4) 16(1) Ba(14) 3765(3) 8678(3) 1312(4) 15(1) Ba(15) 8773(3) 1225(3) 3774(3) 13(1) Ba(15) 8773(3) 1225(3) 3774(3) 13(1) Ba(16) 1410(3) 8583(3) 6412(3) 16(1) Ba(16) 1450(3) 8581(3) 16(1) Ba(17) 8555(3) 6440(3) 1361(3) 16(1) Ba(16) 1450(3) 1451(3) 8561(3) 16(1) Ba(17) 8555(3) 6440(3) 1361(3) 16(1) Ba(17) 8556(3) 1451(3) 85	Ba(6)	8853(3)	8843(3)	9008(3)	11(1)
Ba(o) 4008(3) 1145(3) 6154(3) 11(1) Ba(10) 8839(3) 3971(3) 6141(4) 13(1) Ba(11) 3733(3) 6272(3) 8736(4) 16(1) Ba(12) 6036(3) 8854(3) 3838(4) 10(1) Ba(13) 1327(3) 3692(3) 8770(4) 16(1) Ba(14) 3765(3) 8678(3) 1312(4) 15(1) Ba(15) 8773(3) 1225(3) 3774(3) 13(1) Ba(15) 8773(3) 1225(3) 3774(3) 13(1) Ba(16) 410(3) 8583(3) 6412(3) 16(1) Ba(16) 4110(3) 8561(3) 16(1) Ba(18) 6360(3) 1451(3) 8561(3) 16(1) Ba(18) 6360(3) 1451(3) 8561(3) 16(1) Al(2) 61(10) 7330(15) 2657(18) 5(1) Al(2) 61(10) 7330(15) 2657(18) 5(1) Al(2) 515(2) 515(2) 515(2)<	Ba(7)	1154(3)	5997(3)	3854(3)	12(1)
Ba(10) 8839(3) 3971(3) 6141(4) 13(1) Ba(11) 3733(3) 6272(3) 8736(4) 16(1) Ba(12) 6036(3) 8854(3) 3838(4) 10(1) Ba(13) 1327(3) 3692(3) 8770(4) 16(1) Ba(14) 3765(3) 8678(3) 1312(4) 15(1) Ba(15) 8773(3) 1225(3) 3774(3) 13(1) Ba(16) 1410(3) 8583(3) 6412(3) 16(1) Ba(17) 8555(3) 6440(3) 1361(3) 16(1) Ba(18) 6360(3) 1451(3) 8561(3) 16(1) Ba(18) 6360(3) 1451(3) 8561(3) 16(1) Al(1) -153(12) 5147(13) 2435(12) 5(1) Al(2) 61(10) 7330(15) 2657(18) 5(1) Al(3) 262(11) 7504(10) 4776(12) 5(1) Al(4) 2316(15) 7304(17) 4986(10) 5(1) Al(5) 2551(12) 5152(13) 5175(15) 5(1) Al(6) 2316(14) 4932(10) 7333(15) 5(1) Al(7) 204(11) 4745(12) 7520(11) 5(1) Al(8) -149(12) 2445(11) 5130(13) 5(1) Al(10) -2309(15) 2655(16) 4937(11) 5(1) Al(11) -2536(11) 4776(12) 4759(14) 5(1) Al(11) -2536(11) 4776(12) 4759(14) 5(1) O(1) 167(29) 4824(28) 3406(34) 11(1) O(2) 204(24) 4795(26) 1563(29) 11(1) O(3) 69(21) 6266(29) 2422(25) 11(1) O(4) -917(22) 7722(22) 2389(25) 11(1) O(5) 924(23) 7704(26) 2245(25) 11(1) O(6) 158(23) 7449(20) 3682(26) 11(1) O(7) -317(20) 8451(23) 5131(21) 11(1) O(8) -106(22) 6637(27) 5216(24) 11(1) O(9) 1232(28) 7495(28) 5005(22) 11(1) O(11) 2803(20) 7760(22) 5832(23) 11(1) O(12) 2533(21) 6249(31) 5126(28) 11(1) O(13) 1629(29) 4863(27) 4872(26) 11(1) O(14) 3487(21) 4772(23) 4822(23) 11(1) O(15) 2599(22) 4900(21) 6221(29) 11(1) O(10) 2625(23) 7603(24) 4009(22) 11(1) O(10) 2635(23) 7603(24) 4009(22) 11(1) O(10) 2625(23) 7603(24) 4009(22) 11(1) O(10) 2625(23) 7603(24) 4009(22) 11(1) O(15) 2599(22) 4900(21) 6221(29) 11(1) O(16) 2680(23) 5915(24) 7659(27) 11(1) O(17) 2801(22) 4069(22) 7731(25) 11(1) O(19) -139(28) 5126(27) 6611(34) 11(1) O(20) -135(22) 5260(77) 8434(29) 11(1) O(21) -31(21) 3775(29) 7480(20) 11(1) O(22) 973(21) 2499(33) 515(24) 713(24) 11(1) O(25) 1599(24) 249(24) 7810(24) 11(1) O(26) -136(18) 1583(25) 4773(24) 11(1) O(25) 159(24) 3416(28) 4904(23) 11(1) O(26) 136(18) 1583(25) 4773(24) 11(1) O(27) -1299(28) 2485(26) 4871(22) 11(1) O(28) -2674(23) 2347(25) 5837(25) 11(1)	Ba(8)	6248(3)	3757(3)		10(1)
Ba(11) 3733(3) 6272(3) 8736(4) 16(1) Ba(12) 6036(3) 8854(3) 3838(4) 10(1) Ba(13) 1327(3) 3692(3) 8770(4) 16(1) Ba(14) 3765(3) 8678(3) 1312(4) 15(1) Ba(15) 8773(3) 1225(3) 3774(3) 13(1) Ba(15) 873(3) 1225(3) 3774(3) 13(1) Ba(16) 1410(3) 8583(3) 6412(3) 16(1) Ba(17) 8555(3) 6440(3) 1361(3) 16(1) Ba(18) 6360(3) 1451(3) 8561(3) 16(1) Al(2) 61(10) 7330(15) 2657(18) 5(1) Al(2) 61(10) 7330(15) 2657(18) 5(1) Al(2) 61(10) 7330(15) 2657(18) 5(1) Al(2) 61(10) 7304(17) 4986(10) 5(1) Al(3) 2551(2) 5152(13) 5175(15) 5(1) Al(6) 2316(14) 4932(Ba(9)	4008(3)	1145(3)	6154(3)	11(1)
Ba(12) 6036(3) 8854(3) 3838(4) 10(1) Ba(13) 1327(3) 3692(3) 8770(4) 16(1) Ba(14) 3765(3) 8678(3) 1312(4) 15(1) Ba(14) 3765(3) 8678(3) 1312(4) 15(1) Ba(16) 1410(3) 8583(3) 6412(3) 16(1) Ba(16) 1410(3) 8583(3) 6412(3) 16(1) Ba(18) 6360(3) 1451(3) 8561(3) 16(1) Al(1) -153(12) 5147(13) 2435(12) 5(1) Al(2) 61(10) 7330(15) 2657(18) 5(1) Al(2) 61(10) 7330(15) 2657(18) 5(1) Al(3) 262(11) 7504(10) 4776(12) 5(1) Al(3) 262(11) 7504(10) 4776(12) 5(1) Al(3) 262(11) 7504(10) 4776(12) 5(1) Al(3) 251(12) 5152(13) 5175(15) 5(1) Al(6) 2316(14) 4	Ba(10)	8839(3)	3971(3)	6141(4)	13(1)
Ba(13) 1327(3) 3692(3) 8770(4) 16(1) Ba(14) 3765(3) 8678(3) 1312(4) 15(1) Ba(15) 8773(3) 1225(3) 3774(3) 13(1) Ba(16) 1410(3) 8583(3) 6412(3) 16(1) Ba(17) 8555(3) 6440(3) 1361(3) 16(1) Ba(18) 6360(3) 1451(3) 8561(3) 16(1) Al(1) -153(12) 5147(13) 2435(12) 5(1) Al(2) 61(10) 7330(15) 2657(18) 5(1) Al(2) 61(10) 7330(15) 2657(18) 5(1) Al(3) 262(11) 7504(10) 4776(12) 5(1) Al(3) 2316(14) 4932(10) 7333(15) 5(1) Al(3) -14(11) 4	Ba(11)	3733(3)			16(1)
Ba(14) 3765(3) 8678(3) 1312(4) 15(1) Ba(15) 8773(3) 1225(3) 3774(3) 13(1) Ba(16) 1410(3) 8583(3) 6412(3) 16(1) Ba(17) 8555(3) 6440(3) 1361(3) 16(1) Ba(18) 6360(3) 1451(3) 8561(3) 16(1) Al(2) 61(10) 7330(15) 2657(18) 5(1) Al(2) 61(10) 7330(15) 2657(18) 5(1) Al(3) 262(11) 7504(10) 4776(12) 5(1) Al(4) 2316(15) 7304(17) 4986(10) 5(1) Al(4) 2316(14) 4932(10) 7333(15) 5(1) Al(6) 2316(14) 4932(10) 7333(15) 5(1) Al(7) 204(11) 4745(12) 7520(11) 5(1) Al(8) -4(10) 2701(15) 7312(18) 5(1) Al(10) -2309(15) 2655(16) 4937(11) 5(1) Al(11) -2536(11)	Ba(12)	6036(3)	8854(3)	3838(4)	10(1)
Ba(15) 8773(3) 1225(3) 3774(3) 13(1) Ba(16) 1410(3) 8583(3) 6412(3) 16(1) Ba(17) 8555(3) 6440(3) 1361(3) 16(1) Ba(18) 6360(3) 1451(3) 8561(3) 16(1) Al(1) -153(12) 5147(13) 2435(12) 5(1) Al(2) 61(10) 7330(15) 2657(18) 5(1) Al(3) 262(11) 7504(10) 4776(12) 5(1) Al(3) 262(11) 7504(10) 4776(12) 5(1) Al(4) 2316(15) 7304(17) 4986(10) 5(1) Al(5) 2551(12) 5152(13) 5175(15) 5(1) Al(6) 2316(14) 4932(10) 7333(15) 5(1) Al(6) 2316(14) 4932(10) 7333(15) 5(1) Al(7) 204(11) 4745(12) 7520(11) 5(1) Al(8) -4(10) 2701(15) 7312(18) 5(1) Al(8) -4(10) <td< td=""><td>Ba(13)</td><td>1327(3)</td><td>3692(3)</td><td>8770(4)</td><td>16(1)</td></td<>	Ba(13)	1327(3)	3692(3)	8770(4)	16(1)
Ba(16) 1410(3) 8583(3) 6412(3) 16(1) Ba(17) 8555(3) 6440(3) 1361(3) 16(1) Ba(18) 6360(3) 1451(3) 8561(3) 16(1) Al(1) -153(12) 5147(13) 2435(12) 5(1) Al(2) 61(10) 7330(15) 2657(18) 5(1) Al(3) 262(11) 7504(10) 4776(12) 5(1) Al(3) 262(11) 7504(10) 4776(12) 5(1) Al(4) 2316(15) 7304(17) 4986(10) 5(1) Al(4) 2316(14) 4932(10) 7333(15) 5(1) Al(6) 2316(14) 4932(10) 7333(15) 5(1) Al(6) 2316(14) 4932(10) 7332(18) 5(1) Al(7) 204(11) 4745(12) 7520(11) 5(1) Al(8) -4(10) 2701(15) 7312(18) 5(1) Al(19) -149(12) 2445(11) 5130(13) 5(1) Al(10) -2309(15)	Ba(14)	3765(3)	8678(3)		15(1)
Ba(17) 8555(3) 6440(3) 1361(3) 16(1) Ba(18) 6360(3) 1451(3) 8561(3) 16(1) Al(1) -153(12) 5147(13) 2435(12) 5(1) Al(2) 61(10) 7330(15) 2657(18) 5(1) Al(3) 262(11) 7504(10) 4776(12) 5(1) Al(3) 262(11) 7504(10) 4776(12) 5(1) Al(3) 262(11) 7504(10) 4776(12) 5(1) Al(4) 2316(14) 4932(10) 7333(15) 5(1) Al(6) 2316(14) 4932(10) 7333(15) 5(1) Al(7) 204(11) 4745(12) 7520(11) 5(1) Al(8) -4(10) 2701(15) 7312(18) 5(1) Al(9) -149(12) 2445(11) 5130(13) 5(1) Al(10) -2309(15) 2655(16) 4937(11) 5(1) Al(11) -2536(11) 4776(12) 4759(14) 5(1) Al(11) -2365(14)	Ba(15)	8773(3)	1225(3)	3774(3)	13(1)
Ba(17) 8555(3) 6440(3) 1361(3) 16(1) Ba(18) 6360(3) 1451(3) 8561(3) 16(1) Al(1) -153(12) 5147(13) 2435(12) 5(1) Al(2) 61(10) 7330(15) 2657(18) 5(1) Al(3) 262(11) 7504(10) 4776(12) 5(1) Al(3) 262(11) 7504(10) 4776(12) 5(1) Al(3) 262(11) 7504(10) 4776(12) 5(1) Al(4) 2316(14) 4932(10) 7333(15) 5(1) Al(6) 2316(14) 4932(10) 7333(15) 5(1) Al(7) 204(11) 4745(12) 7520(11) 5(1) Al(8) -4(10) 2701(15) 7312(18) 5(1) Al(9) -149(12) 2445(11) 5130(13) 5(1) Al(10) -2309(15) 2655(16) 4937(11) 5(1) Al(11) -2536(11) 4776(12) 4759(14) 5(1) Al(11) -2365(14)	Ba(16)	1410(3)	8583(3)	6412(3)	16(1)
Ba(18) 6360(3) 1451(3) 8561(3) 16(1) Al(1) -153(12) 5147(13) 2435(12) 5(1) Al(2) 61(10) 7330(15) 2657(18) 5(1) Al(3) 262(11) 7504(10) 4776(12) 5(1) Al(4) 2316(15) 7304(17) 4986(10) 5(1) Al(4) 2316(14) 4932(10) 7333(15) 5(1) Al(6) 2316(14) 4932(10) 7333(15) 5(1) Al(7) 204(11) 4745(12) 7520(11) 5(1) Al(8) -4(10) 2701(15) 7312(18) 5(1) Al(9) -149(12) 2445(11) 5130(13) 5(1) Al(10) -2309(15) 2655(16) 4937(11) 5(1) Al(11) -2536(11) 4776(12) 4759(14) 5(1) Al(11) -2536(11) 4776(12) 4759(14) 5(1) Al(11) -2536(14) 4979(10) 2717(16) 5(1) O(1) 167(29)	Ba(17)	8555(3)			16(1)
Al(1) -153(12) 5147(13) 2435(12) 5(1) Al(2) 61(10) 7330(15) 2657(18) 5(1) Al(3) 262(11) 7504(10) 4776(12) 5(1) Al(4) 2316(15) 7304(17) 4986(10) 5(1) Al(5) 2551(12) 5152(13) 5175(15) 5(1) Al(6) 2316(14) 4932(10) 7333(15) 5(1) Al(7) 204(11) 4745(12) 7520(11) 5(1) Al(8) -4(10) 2701(15) 7312(18) 5(1) Al(9) -149(12) 2445(11) 5130(13) 5(1) Al(10) -2309(15) 2655(16) 4937(11) 5(1) Al(11) -2536(11) 4776(12) 4759(14) 5(1) Al(12) -2365(14) 4979(10) 2717(16) 5(1) Al(11) -2536(11) 4776(12) 4759(14) 5(1) Al(12) -2365(14) 4979(10) 2717(16) 5(1) O(1) 167(29) 4824(28) 3406(34) 11(1) O(2) 204(24) 4795(26) 1563(29) 11(1) O(3) 69(21) 6266(29) 2422(25) 11(1) O(4) -917(22) 7722(22) 2389(25) 11(1) O(5) 924(23) 7704(26) 2245(25) 11(1) O(6) 158(23) 7449(20) 3682(26) 11(1) O(7) -317(20) 8451(23) 5131(21) 11(1) O(8) -106(22) 6637(27) 5216(24) 11(1) O(9) 1232(28) 7495(28) 5005(22) 11(1) O(10) 2625(23) 7603(24) 4009(22) 11(1) O(10) 2625(23) 7603(24) 4009(22) 11(1) O(11) 2803(20) 7760(22) 5832(23) 11(1) O(12) 2533(21) 6249(31) 5126(28) 11(1) O(13) 1629(29) 4863(27) 4872(26) 11(1) O(14) 3487(21) 4772(23) 4822(23) 11(1) O(15) 2599(22) 4900(21) 6221(29) 11(1) O(16) 2680(23) 5915(24) 7659(27) 11(1) O(17) 2801(22) 4069(22) 7731(25) 11(1) O(18) 1283(26) 4825(24) 7448(22) 11(1) O(19) -139(28) 5126(27) 6611(34) 11(1) O(20) -135(22) 5260(27) 8434(29) 11(1) O(19) -139(28) 5126(27) 6611(34) 11(1) O(20) -139(28) 5126(27) 6611(34) 11(1) O(20) -135(22) 5260(27) 8434(29) 11(1) O(21) -31(21) 3775(29) 7450(26) 11(1) O(22) 973(11) 2429(23) 7581(27) 11(1) O(23) -849(22) 2249(24) 7810(24) 11(1) O(24) -63(19) 2474(21) 6217(31) 11(1) O(25) 159(24) 3416(28) 4904(23) 11(1) O(26) 136(18) 1583(5) 4773(24) 11(1) O(27) -1299(28) 2485(26) 4871(22) 11(1) O(28) -2674(23) 2347(25) 5837(25) 11(1)					
Al(2) 61(10) 7330(15) 2657(18) 5(1) Al(3) 262(11) 7504(10) 4776(12) 5(1) Al(4) 2316(15) 7304(17) 4986(10) 5(1) Al(5) 2551(12) 5152(13) 5175(15) 5(1) Al(6) 2316(14) 4932(10) 7333(15) 5(1) Al(7) 204(11) 4745(12) 7520(11) 5(1) Al(8) -4(10) 2701(15) 7312(18) 5(1) Al(9) -149(12) 2445(11) 5130(13) 5(1) Al(10) -2309(15) 2655(16) 4937(11) 5(1) Al(11) -2536(11) 4776(12) 4759(14) 5(1) Al(12) -2365(14) 4979(10) 2717(16) 5(1) Al(12) -2365(14) 4979(10) 2717(16) 5(1) O(1) 167(29) 4824(28) 3406(34) 11(1) O(2) 204(24) 4795(26) 1563(29) 11(1) O(3) 69(21) 6266(29) 2422(25) 11(1) O(4) -917(22) 7722(22) 2389(25) 11(1) O(5) 924(23) 7704(26) 2245(25) 11(1) O(6) 158(23) 7449(20) 3682(26) 11(1) O(7) -317(20) 8451(23) 5131(21) 11(1) O(8) -106(22) 6637(27) 5216(24) 11(1) O(9) 1232(28) 7495(28) 5005(22) 11(1) O(10) 2625(23) 7603(24) 4009(22) 11(1) O(11) 2803(20) 7760(22) 5832(23) 11(1) O(12) 2533(21) 6249(31) 5126(28) 11(1) O(13) 1629(29) 4863(27) 4872(26) 11(1) O(13) 1629(29) 4863(27) 4872(26) 11(1) O(13) 1629(29) 4863(27) 4872(26) 11(1) O(14) 3487(21) 4772(23) 4822(23) 11(1) O(15) 2599(22) 4900(21) 6221(29) 11(1) O(16) 2680(23) 5915(24) 7659(27) 11(1) O(17) 2801(22) 4069(22) 7731(25) 11(1) O(19) -139(28) 5126(27) 6611(34) 11(1) O(19) -139(28) 5126(27) 6611(34) 11(1) O(20) -135(22) 5260(27) 8434(29) 11(1) O(19) -139(28) 5126(27) 6611(34) 11(1) O(20) -135(22) 5260(27) 8434(29) 11(1) O(21) -31(21) 3775(29) 7450(26) 11(1) O(22) 973(21) 2429(23) 7581(27) 11(1) O(23) -849(22) 2249(24) 7810(24) 11(1) O(24) -63(19) 2474(21) 6217(31) 11(1) O(25) 159(24) 3416(28) 4904(23) 11(1) O(26) 136(18) 1583(25) 4773(24) 11(1) O(26) 136(18) 1583(25) 4773(24) 11(1) O(27) -1299(28) 2485(26) 4871(22) 11(1) O(26) 136(18) 1583(25) 4773(24) 11(1) O(27) -1299(28) 2485(26) 4871(22) 11(1) O(28) -2674(23) 2347(25) 5837(25) 11(1)	Al(1)				
Al(3) 262(11) 7504(10) 4776(12) 5(1) Al(4) 2316(15) 7304(17) 4986(10) 5(1) Al(5) 2551(12) 5152(13) 5175(15) 5(1) Al(6) 2316(14) 4932(10) 7333(15) 5(1) Al(7) 204(11) 4745(12) 7520(11) 5(1) Al(8) -4(10) 2701(15) 7312(18) 5(1) Al(9) -149(12) 2445(11) 5130(13) 5(1) Al(10) -2309(15) 2655(16) 4937(11) 5(1) Al(11) -2536(11) 4776(12) 4759(14) 5(1) Al(12) -2365(14) 4979(10) 2717(16) 5(1) Al(12) -2365(14) 4979(10) 2717(16) 5(1) O(1) 167(29) 4824(28) 3406(34) 11(1) O(2) 204(24) 4795(26) 1563(29) 11(1) O(3) 69(21) 6266(29) 2422(25) 11(1) O(5) 924(23) 7704(26) 2245(25) 11(1) O(6) 158(23) 7449(20) 3682(26) 11(1) O(7) -317(20) 8451(23) 5131(21) 11(1) O(8) -106(22) 6637(27) 5216(24) 11(1) O(9) 1232(28) 7495(28) 5005(22) 11(1) O(10) 2625(23) 7603(24) 4009(22) 11(1) O(11) 2803(20) 7760(22) 5832(23) 11(1) O(13) 1629(29) 4863(27) 4872(26) 11(1) O(13) 1629(29) 4863(27) 4872(26) 11(1) O(13) 1629(29) 4863(27) 4872(26) 11(1) O(14) 3487(21) 4772(23) 4822(23) 11(1) O(15) 2599(22) 4900(21) 6221(29) 11(1) O(16) 2680(23) 5915(24) 7659(27) 11(1) O(16) 2680(23) 5915(24) 7659(27) 11(1) O(17) 2801(22) 4069(22) 7731(25) 11(1) O(19) -139(28) 5126(27) 6611(34) 11(1) O(20) -135(22) 5260(27) 8434(29) 11(1) O(20) -135(22) 5260(27) 8434(29) 11(1) O(21) -31(21) 3775(29) 7450(26) 11(1) O(22) 973(21) 2429(23) 7581(27) 11(1) O(23) -849(22) 2249(24) 7810(24) 11(1) O(24) -63(19) 2474(21) 6217(31) 11(1) O(25) 159(24) 3416(28) 4904(23) 11(1) O(26) 136(18) 1583(25) 4773(24) 11(1)		61(10)			
Al(4) 2316(15) 7304(17) 4986(10) 5(1) Al(5) 2551(12) 5152(13) 5175(15) 5(1) Al(6) 2316(14) 4932(10) 7333(15) 5(1) Al(7) 204(11) 4745(12) 7520(11) 5(1) Al(8) -4(10) 2701(15) 7312(18) 5(1) Al(9) -149(12) 2445(11) 5130(13) 5(1) Al(10) -2309(15) 2655(16) 4937(11) 5(1) Al(11) -2536(11) 4776(12) 4759(14) 5(1) Al(12) -2365(14) 4979(10) 2717(16) 5(1) Al(12) -2365(14) 4979(10) 2717(16) 5(1) O(1) 167(29) 4824(28) 3406(34) 11(1) O(2) 204(24) 4795(26) 1563(29) 11(1) O(3) 69(21) 6266(29) 2422(25) 11(1) O(4) -917(22) 7722(22) 2389(25) 11(1) O(5) 924(23) 7704(26) 2245(25) 11(1) O(6) 158(23) 7449(20) 3682(26) 11(1) O(7) -317(20) 8451(23) 5131(21) 11(1) O(8) -106(22) 6637(27) 5216(24) 11(1) O(9) 1232(28) 7495(28) 5005(22) 11(1) O(10) 2625(23) 7603(24) 4009(22) 11(1) O(10) 2625(23) 7603(24) 4009(22) 11(1) O(11) 2803(20) 7760(22) 5832(23) 11(1) O(12) 2533(21) 6249(31) 5126(28) 11(1) O(13) 1629(29) 4863(27) 4872(26) 11(1) O(14) 3487(21) 4772(23) 4822(23) 11(1) O(15) 2599(22) 4900(21) 6221(29) 11(1) O(16) 2680(23) 5915(24) 7659(27) 11(1) O(17) 2801(22) 4069(22) 7731(25) 11(1) O(18) 1283(26) 4825(24) 7448(22) 11(1) O(19) -139(28) 5126(27) 6611(34) 11(1) O(20) -135(22) 5260(27) 8434(29) 11(1) O(20) -135(22) 5260(27) 8434(29) 11(1) O(21) -31(21) 3775(29) 7450(26) 11(1) O(22) 973(21) 2429(23) 7581(27) 11(1) O(23) -849(22) 2249(24) 7810(24) 11(1) O(25) 159(24) 3416(28) 4904(23) 11(1) O(26) 136(18) 1583(25) 4773(24) 11(1) O(26) 136(18) 1583(25) 4773(24) 11(1) O(26) -1299(28) 2485(26) 4871(22) 11(1) O(26) 136(18) 1583(25) 4773(24) 11(1) O(26) -1299(28) 2485(26) 4871(22) 11(1) O(26) -1299(28) 2485(26) 4871(22) 11(1) O(26) -1299(28) 2485(26) 4871(22) 11(1) O(27) -1299(28) 2485(26) 4871(22) 11(1) O(28) -2674(23) 2347(25) 5837(25) 11(1)					
Al(5) 2551(12) 5152(13) 5175(15) 5(1) Al(6) 2316(14) 4932(10) 7333(15) 5(1) Al(7) 204(11) 4745(12) 7520(11) 5(1) Al(8) -4(10) 2701(15) 7312(18) 5(1) Al(9) -149(12) 2445(11) 5130(13) 5(1) Al(10) -2309(15) 2655(16) 4937(11) 5(1) Al(11) -2536(11) 4776(12) 4759(14) 5(1) Al(11) -2536(11) 4776(12) 4759(14) 5(1) Al(12) -2365(14) 4979(10) 2717(16) 5(1) O(1) 167(29) 4824(28) 3406(34) 11(1) O(2) 204(24) 4795(26) 1563(29) 11(1) O(3) 69(21) 6266(29) 2422(25) 11(1) O(4) -917(22) 7722(22) 2389(25) 11(1) O(5) 924(23) 7704(26) 2245(25) 11(1) O(6) 158(23) 7449(20) 3682(26) 11(1) O(7) -317(20) 8451(23) 5131(21) 11(1) O(8) -106(22) 6637(27) 5216(24) 11(1) O(10) 2625(23) 7603(24) 4009(22) 11(1) O(10) 2625(23) 7603(24) 4009(22) 11(1) O(10) 2625(23) 7603(24) 4009(22) 11(1) O(11) 2803(20) 7760(22) 5832(23) 11(1) O(12) 2533(21) 6249(31) 5126(28) 11(1) O(13) 1629(29) 4863(27) 4872(26) 11(1) O(14) 3487(21) 4772(23) 4822(23) 11(1) O(15) 2599(22) 4900(21) 6221(29) 11(1) O(16) 2680(23) 5915(24) 7659(27) 11(1) O(17) 2801(22) 4069(22) 7731(25) 11(1) O(18) 1283(26) 4825(24) 7448(22) 11(1) O(19) -139(28) 5126(27) 6611(34) 11(1) O(20) -135(22) 5260(27) 8434(29) 11(1) O(21) -31(21) 3775(29) 7450(26) 11(1) O(22) 973(21) 2429(23) 7581(27) 11(1) O(22) 973(21) 2429(23) 7581(27) 11(1) O(23) -849(22) 2249(24) 7810(24) 11(1) O(24) -63(19) 2474(21) 6217(31) 11(1) O(25) 159(4) 3416(28) 4904(23) 11(1) O(26) 136(18) 1583(25) 4773(24) 11(1) O(26) 136(18) 1583(25) 4773(24) 11(1) O(27) -1299(28) 2485(26) 4871(22) 11(1) O(26) 136(18) 1583(25) 4773(24) 11(1) O(27) -1299(28) 2485(26) 4871(22) 11(1) O(28) -2674(23) 2347(25) 5837(25) 11(1)					
Al(6) 2316(14) 4932(10) 7333(15) 5(1) Al(7) 204(11) 4745(12) 7520(11) 5(1) Al(8) -4(10) 2701(15) 7312(18) 5(1) Al(9) -149(12) 2445(11) 5130(13) 5(1) Al(10) -2309(15) 2655(16) 4937(11) 5(1) Al(11) -2536(11) 4776(12) 4759(14) 5(1) Al(12) -2365(14) 4979(10) 2717(16) 5(1) O(1) 167(29) 4824(28) 3406(34) 11(1) O(2) 204(24) 4795(26) 1563(29) 11(1) O(3) 69(21) 6266(29) 2422(25) 11(1) O(4) -917(22) 7722(22) 2389(25) 11(1) O(5) 924(23) 7704(26) 2245(25) 11(1) O(6) 158(23) 7449(20) 3682(26) 11(1) O(7) -317(20) 8451(23) 5131(21) 11(1) O(8) -106(22) 6637(27) 5216(24) 11(1) O(9) 1232(28) 7495(28) 5005(22) 11(1) O(10) 2625(23) 7603(24) 4009(22) 11(1) O(11) 2803(20) 7760(22) 5832(23) 11(1) O(12) 2533(21) 6249(31) 5126(28) 11(1) O(13) 1629(29) 4863(27) 4872(26) 11(1) O(14) 3487(21) 4772(23) 4822(23) 11(1) O(15) 2599(22) 4900(21) 6221(29) 11(1) O(16) 2680(23) 5915(24) 7659(27) 11(1) O(17) 2801(22) 4069(22) 7731(25) 11(1) O(19) -139(28) 5126(27) 6611(34) 11(1) O(19) -139(28) 5126(27) 6611(34) 11(1) O(19) -139(28) 5126(27) 6611(34) 11(1) O(20) -135(22) 5260(27) 8434(29) 11(1) O(20) -135(22) 5260(27) 8434(29) 11(1) O(21) -31(21) 3775(29) 7450(26) 11(1) O(22) 973(21) 2429(23) 7581(27) 11(1) O(25) 159(24) 3416(28) 4904(23) 11(1) O(26) 136(18) 1583(25) 4773(24) 11(1) O(27) -1299(28) 2485(26) 4871(22) 11(1) O(28) -2674(23) 2347(25) 5837(25) 11(1)					
AI(7)		, ,	. ,		
$\begin{array}{llllllllllllllllllllllllllllllllllll$	` '	, ,	` '	, ,	
Al(9) -149(12) 2445(11) 5130(13) 5(1) Al(10) -2309(15) 2655(16) 4937(11) 5(1) Al(11) -2536(11) 4776(12) 4759(14) 5(1) Al(12) -2365(14) 4979(10) 2717(16) 5(1) O(1) 167(29) 4824(28) 3406(34) 11(1) O(2) 204(24) 4795(26) 1563(29) 11(1) O(3) 69(21) 6266(29) 2422(25) 11(1) O(4) -917(22) 7722(22) 2389(25) 11(1) O(5) 924(23) 7704(26) 2245(25) 11(1) O(6) 158(23) 7449(20) 3682(26) 11(1) O(7) -317(20) 8451(23) 5131(21) 11(1) O(8) -106(22) 6637(27) 5216(24) 11(1) O(9) 1232(28) 7495(28) 5005(22) 11(1) O(10) 2625(23) 7603(24) 4009(22) 11(1) O(11) 2803(20) 7760(22) 5832(23) 11(1) O(12) 2533(21) 6249(31) 5126(28) 11(1) O(13) 1629(29) 4863(27) 4872(26) 11(1) O(14) 3487(21) 4772(23) 4822(23) 11(1) O(15) 2599(22) 4900(21) 6221(29) 11(1) O(16) 2680(23) 5915(24) 7659(27) 11(1) O(19) -139(28) 5126(27) 6611(34) 11(1) O(19) -139(28) 5126(27) 6611(34) 11(1) O(20) -135(22) 5260(27) 8434(29) 11(1) O(21) -31(21) 3775(29) 7450(26) 11(1) O(22) 973(21) 2429(23) 7581(27) 11(1) O(23) -849(22) 2249(24) 7810(24) 11(1) O(24) -63(19) 2474(21) 6217(31) 11(1) O(25) 159(24) 3416(28) 4904(23) 11(1) O(26) 136(18) 1583(25) 4773(24) 11(1) O(27) -1299(28) 2485(26) 4871(22) 11(1) O(28) -2674(23) 2347(25) 5837(25) 11(1)		, ,		` '	
Al(10) -2309(15) 2655(16) 4937(11) 5(1) Al(11) -2536(11) 4776(12) 4759(14) 5(1) Al(12) -2365(14) 4979(10) 2717(16) 5(1) O(1) 167(29) 4824(28) 3406(34) 11(1) O(2) 204(24) 4795(26) 1563(29) 11(1) O(3) 69(21) 6266(29) 2422(25) 11(1) O(4) -917(22) 7722(22) 2389(25) 11(1) O(5) 924(23) 7704(26) 2245(25) 11(1) O(6) 158(23) 7449(20) 3682(26) 11(1) O(7) -317(20) 8451(23) 5131(21) 11(1) O(8) -106(22) 6637(27) 5216(24) 11(1) O(9) 1232(28) 7495(28) 5005(22) 11(1) O(10) 2625(23) 7603(24) 4009(22) 11(1) O(11) 2803(20) 7760(22) 5832(23) 11(1) O(12) 2533(21) 6249(31) 5126(28) 11(1) O(13) 1629(29) 4863(27) 4872(26) 11(1) O(14) 3487(21) 4772(23) 4822(23) 11(1) O(15) 2599(22) 4900(21) 6221(29) 11(1) O(16) 2680(23) 5915(24) 7659(27) 11(1) O(17) 2801(22) 4069(22) 7731(25) 11(1) O(19) -139(28) 5126(27) 6611(34) 11(1) O(20) -135(22) 5260(27) 8434(29) 11(1) O(21) -31(21) 3775(29) 7450(26) 11(1) O(22) 973(21) 2429(23) 7581(27) 11(1) O(23) -849(22) 2249(24) 7810(24) 11(1) O(24) -63(19) 2474(21) 6217(31) 11(1) O(25) 159(24) 3416(28) 4904(23) 11(1) O(27) -1299(28) 2485(26) 4871(22) 11(1) O(28) -2674(23) 2347(25) 5837(25) 11(1)			• •		
Al(11) -2536(11) 4776(12) 4759(14) 5(1) Al(12) -2365(14) 4979(10) 2717(16) 5(1) O(1) 167(29) 4824(28) 3406(34) 11(1) O(2) 204(24) 4795(26) 1563(29) 11(1) O(3) 69(21) 6266(29) 2422(25) 11(1) O(4) -917(22) 7722(22) 2389(25) 11(1) O(5) 924(23) 7704(26) 2245(25) 11(1) O(6) 158(23) 7449(20) 3682(26) 11(1) O(7) -317(20) 8451(23) 5131(21) 11(1) O(8) -106(22) 6637(27) 5216(24) 11(1) O(9) 1232(28) 7495(28) 5005(22) 11(1) O(10) 2625(23) 7603(24) 4009(22) 11(1) O(11) 2803(20) 7760(22) 5832(23) 11(1) O(12) 2533(21) 6249(31) 5126(28) 11(1) O(13) 1629(29) 4863(27) 4872(26) 11(1) O(14) 3487(21) 4772(23) 4822(23) 11(1) O(15) 2599(22) 4900(21) 6221(29) 11(1) O(16) 2680(23) 5915(24) 7659(27) 11(1) O(17) 2801(22) 4069(22) 7731(25) 11(1) O(19) -139(28) 5126(27) 6611(34) 11(1) O(20) -135(22) 5260(27) 8434(29) 11(1) O(21) -31(21) 3775(29) 7450(26) 11(1) O(22) 973(21) 2429(23) 7581(27) 11(1) O(23) -849(22) 2249(24) 7810(24) 11(1) O(26) 136(18) 1583(25) 4773(24) 11(1) O(27) -1299(28) 2485(26) 4871(22) 11(1) O(28) -2674(23) 2347(25) 5837(25) 11(1)					
Al(12) -2365(14) 4979(10) 2717(16) 5(1) O(1) 167(29) 4824(28) 3406(34) 11(1) O(2) 204(24) 4795(26) 1563(29) 11(1) O(3) 69(21) 6266(29) 2422(25) 11(1) O(4) -917(22) 7722(22) 2389(25) 11(1) O(5) 924(23) 7704(26) 2245(25) 11(1) O(6) 158(23) 7449(20) 3682(26) 11(1) O(7) -317(20) 8451(23) 5131(21) 11(1) O(8) -106(22) 6637(27) 5216(24) 11(1) O(9) 1232(28) 7495(28) 5005(22) 11(1) O(10) 2625(23) 7603(24) 4009(22) 11(1) O(11) 2803(20) 7760(22) 5832(23) 11(1) O(12) 2533(21) 6249(31) 5126(28) 11(1) O(13) 1629(29) 4863(27) 4872(26) 11(1) O(14) 3487(21) 4772(23) 4822(23) 11(1) O(15) 2599(22) 4900(21) 6221(29) 11(1) O(16) 2680(23) 5915(24) 7659(27) 11(1) O(18) 1283(26) 4825(24) 7448(22) 11(1) O(19) -139(28) 5126(27) 6611(34) 11(1) O(20) -135(22) 5260(27) 8434(29) 11(1) O(21) -31(21) 3775(29) 7450(26) 11(1) O(22) 973(21) 2429(23) 7581(27) 11(1) O(23) -849(22) 2249(24) 7810(24) 11(1) O(24) -63(19) 2474(21) 6217(31) 11(1) O(25) 159(24) 3416(28) 4904(23) 11(1) O(27) -1299(28) 2485(26) 4871(22) 11(1) O(28) -2674(23) 2347(25) 5837(25) 11(1)		, ,			
O(1) 167(29) 4824(28) 3406(34) 11(1) O(2) 204(24) 4795(26) 1563(29) 11(1) O(3) 69(21) 6266(29) 2422(25) 11(1) O(4) -917(22) 7722(22) 2389(25) 11(1) O(5) 924(23) 7704(26) 2245(25) 11(1) O(6) 158(23) 7449(20) 3682(26) 11(1) O(7) -317(20) 8451(23) 5131(21) 11(1) O(8) -106(22) 6637(27) 5216(24) 11(1) O(9) 1232(28) 7495(28) 5005(22) 11(1) O(10) 2625(23) 7603(24) 4009(22) 11(1) O(11) 2803(20) 7760(22) 5832(23) 11(1) O(13) 1629(29) 4863(27) 4872(26) 11(1) O(14) 3487(21) 4772(23) 4822(23) 11(1) O(15) 2599(22) 4900(21) 6221(29) 11(1) O(16) 2680(23) 5915(24) 7659(27) 11(1) O(18) 1283(26) 4825(24) 7448(22) 11(1) O(19) -139(28) 5126(27) 6611(34) 11(1) O(20) -135(22) 5260(27) 8434(29) 11(1) O(21) -31(21) 3775(29) 7450(26) 11(1) O(22) 973(21) 2429(23) 7581(27) 11(1) O(23) -849(22) 2249(24) 7810(24) 11(1) O(25) 159(24) 3416(28) 4904(23) 11(1) O(26) 136(18) 1583(25) 4773(24) 11(1) O(27) -1299(28) 2485(26) 4871(22) 11(1) O(27) -1299(28) 2485(26) 4871(22) 11(1) O(28) -2674(23) 2347(25) 5837(25) 11(1)		, ,	• •	• •	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$, ,			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$, ,	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1.1	, ,			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$, ,	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$, ,			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		٠,		` '	` '
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$, ,	, ,		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			• •	, ,	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$, ,	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					
O(22) 973(21) 2429(23) 7581(27) 11(1) O(23) -849(22) 2249(24) 7810(24) 11(1) O(24) -63(19) 2474(21) 6217(31) 11(1) O(25) 159(24) 3416(28) 4904(23) 11(1) O(26) 136(18) 1583(25) 4773(24) 11(1) O(27) -1299(28) 2485(26) 4871(22) 11(1) O(28) -2674(23) 2347(25) 5837(25) 11(1)			, .		
O(23) -849(22) 2249(24) 7810(24) 11(1) O(24) -63(19) 2474(21) 6217(31) 11(1) O(25) 159(24) 3416(28) 4904(23) 11(1) O(26) 136(18) 1583(25) 4773(24) 11(1) O(27) -1299(28) 2485(26) 4871(22) 11(1) O(28) -2674(23) 2347(25) 5837(25) 11(1)					
O(24) $-63(19)$ $2474(21)$ $6217(31)$ $11(1)$ $O(25)$ $159(24)$ $3416(28)$ $4904(23)$ $11(1)$ $O(26)$ $136(18)$ $1583(25)$ $4773(24)$ $11(1)$ $O(27)$ $-1299(28)$ $2485(26)$ $4871(22)$ $11(1)$ $O(28)$ $-2674(23)$ $2347(25)$ $5837(25)$ $11(1)$					
O(25) 159(24) 3416(28) 4904(23) 11(1) O(26) 136(18) 1583(25) 4773(24) 11(1) O(27) -1299(28) 2485(26) 4871(22) 11(1) O(28) -2674(23) 2347(25) 5837(25) 11(1)			, ,		
O(26) 136(18) 1583(25) 4773(24) 11(1) O(27) -1299(28) 2485(26) 4871(22) 11(1) O(28) -2674(23) 2347(25) 5837(25) 11(1)				` ,	
O(27) -1299(28) 2485(26) 4871(22) 11(1) O(28) -2674(23) 2347(25) 5837(25) 11(1)					
O(28) $-2674(23)$ $2347(25)$ $5837(25)$ $11(1)$, ,	• •		
• • • • • • • • • • • • • • • • • • • •					
	J(20)	20.7(20)	20.7(20)	200,(20)	(continued

Tabelle 2 (continued)

Atom	x	у	z	U(eq)
O(29)	-2675(21)	2190(22)	4056(23)	11(1)
O(30)	-2451(21)	3697(29)	4876(27)	11(1)
O(31)	-3386(22)	5117(21)	5310(24)	11(1)
O(32)	-1594(29)	5112(26)	5233(27)	11(1)
O(33)	-2473(22)	5037(22)	3751(32)	11(1)
O(34)	-2568(23)	4037(23)	2394(28)	11(1)
O(35)	-2737(23)	5793(21)	2235(25)	11(1)
O(36)	-1247(29)	5086(21)	2463(24)	11(1)

durch Erhitzen in kleinen Korundtiegeln auf 1500 °C erhalten. Die aufgeschmolzenen Proben wurden mit 1 °C Min⁻¹ auf 1000 °C abgekühlt, danach mit 10 °C Min⁻¹ auf Raumtemperatur.

2.2. Datensammlung und Strukturbestimmung

Trotz der Bedeutung, die der Strukturbestimmung von Ba_{2.33}Ca_{0.67}Al₂O₆ (2) zukommt und ohne die die Strukturlösung von Ba₃Al₂O₆ (1) nicht möglich gewesen wäre, wird auf die Wiedergabe der Einzelheiten der Strukturanalyse von 2 verzichtet, da einerseits Kristallund Datenqualität nur sehr mittelmäßig sind und deshalb auch die Verfeinerung nicht dem üblichen Anspruch gerecht wird, andererseits die Ortsparameter aber auch gar nicht wiedergegeben werden müssen, da sie sich nur unwesentlich von denen der Ca-freien Verbindung unterscheiden.

Die wesentlichen Daten der Strukturanalyse von 1 sind in Tabelle 1 wiedergegeben. Die systematischen Auslöschungen sind konsistent mit der Raumgruppe Pa3. Die hohe kubische Pseudosymmetrie spiegelt sich auch in der sehr guten Übereinstimmung der Strukturfaktoren mit zyklisch permutierten hkl-Tripelkomponenten (interner Gütefaktor 3%) wieder. Deutlich größere Zweifel an der kubischen Symmetrie beschlichen uns bei der Analyse des Datensatzes von 2. Die Mittelung in Pa3 zeigt hier größere Abweichungen, auch das Auslöschunggesetz wird hier merklich durchbrochen. Wenngleich die zweite Beobachtung teilweise auch durch die mindere Kristallqualität hervorgerufen wird, so zwingt die Kombination dieser beiden Symmetrieerniedrigungen zum Abstieg in die Raumgruppe P2₁2₁2₁. Die Anwendung direkter Phasenbestimmungsmethoden [9] in dieser Raumgruppe führte für 2 nach einigen Versuchen auch zum Erfolg, die Punktlagen der 18 Erdalkaliatome konnten zweifelsfrei bestimmt werden. Aus mehreren Fouriersynthesen [10] ergab sich die Verteilung der 12 Al- und der 36 O-Atome der asymmetrischen Einheit, gleichzeitig wurde deutlich, daß die Elektronendichte auf vier der 18 Erdalkaliatompunktlagen nur ca. 1/3 der Ba-Streukraft entspricht. Die Besetzung dieser Positionen mit Ca-Atomen ver-

Tabelle 3			
Abstände (Å) in 1 (Standardabweichungen	in	Klammern)	

Tabelle 3 (continued)

Abstände (Å) in 1 (Standa	ardabweichungen in Klammern)	· · · · · · · · · · · · · · · · · · ·	***************************************
		Ba(9)-O(1)#3	2.60(6)
Ba(1)-O(11)#1	2.52(4)	Ba(9)-O(5)#5	2.62(4)
Ba(1)-O(8)#2	2.79(4)	Ba(9)-O(25)#3	2.68(4)
Ba(1)-O(32)#2	2.81(5)	Ba(9)-O(27)#3	2.87(4)
Ba(1)-O(33)#2	2.90(4)	Ba(9)-O(30)#3	2.96(4)
Ba(1)-O(36)#2	3.06(4)	Ba(9)-O(36)#3	3.08(4)
Ba(1)-O(6)#2	3.06(4)	Ba(9)-O(33)#3	3.13(4)
Ba(1)-O(1)#2	3.22(4)	Ba(9)-O(32)#3	3.25(4)
Ba(1)-O(3)#2	3.25(4)	Ba(10)-O(32)#6	
Ba(2)-O(16)#1	2.62(4)	Ba(10)=O(32)#0 Ba(10)=O(35)#5	2.51(4)
Ba(2)-O(28)#3	2.80(4)	Ba(10)=O(33)#3 Ba(10)=O(19)#6	2.59(4)
	• •		2.66(5)
Ba(2)–O(14) Ba(2)–O(23)#3	2.81(4)	Ba(10)-O(21)#6	2.87(4)
` ' ' '	2.86(4)	Ba(10)-O(30)#6	3.02(4)
Ba(2)-O(24)#3	2.95(4)	Ba(10)-O(24)#6	3.07(3)
Ba(2)-O(18)#1	3.13(4)	Ba(10)-O(25)#6	3.12(4)
Ba(2)-O(20)#1	3.18(4)	Ba(10)-O(27)#6	3.23(4)
Ba(2)–O(27)#3	3.21(4)	Ba(11)-O(16)	2.56(4)
Ba(3)-O(7)#4	2.59(4)	Ba(11)-O(4)#4	2.56(4)
Ba(3)-O(14)	2.60(4)	Ba(11)-O(28)#13	2.59(4)
Ba(3)-O(20)#1	2.62(5)	Ba(11)-O(1)#5	2.62(4)
Ba(3)-O(2)#5	2.64(5)	Ba(11)-O(25)#5	2.71(4)
Ba(3)-O(31)#6	2.67(4)	Ba(11)-O(13)#5	2.72(4)
Ba(3)-O(26)#3	2.68(4)		
	• •	Ba(12)-O(23)#1	2.51(4)
Ba(4)-O(31)#6	2.54(4)	Ba(12)-O(8)#4	2.58(4)
Ba(4)-O(34)#5	2.77(5)	Ba(12)-O(19)#4	2.67(5)
Ba(4)-O(36)#5	2.88(4)	Ba(12)-O(9)#4	2.95(4)
Ba(4)-O(6)#4	2.89(4)	Ba(12)-O(12)#4	3.01(4)
Ba(4)–O(5)#4	3.01(4)	Ba(12)-O(18)#4	3.07(4)
Ba(4)-O(10)#4	2.96(4)	Ba(12)-O(13)#4	3.16(4)
Ba(4)-O(2)#5	3.04(4)	Ba(12)-O(15)#4	3.30(3)
Ba(4)-O(9)#4	3.04(4)	Ba(13)-O(7)#16	2.50(3)
P-(5) O(30) #5	2.57(4)	Ba(13)-O(10)#5	2.78(4)
Ba(5)-O(29)#5	2.57(4)	Ba(13)-O(18)	2.87(4)
Ba(5)-O(5)#4	2.58(4)	Ba(13)-O(12)#5	2.93(4)
Ba(5)-O(17)#10	2.59(4)	Ba(13)–O(22)	2.92(4)
Ba(5)-O(10)#4	2.58(4)	Ba(13)–O(17)	3.04(4)
Ba(5)-O(22)#10	2.61(4)	Ba(13)-O(14)#5	3.09(4)
Ba(5)-O(34)#5	2.63(4)	Ba(13)–O(21)	3.13(4)
Ba(6)-O(25)#10	2.53(4)	. , . ,	
Ba(6)-O(29)#5	2.59(4)	Ba(14)-O(20)#4	2.56(4)
Ba(6)-O(13)#10	2.62(5)	Ba(14)-O(22)#1	2.81(4)
Ba(6)-O(18)#10	2.91(4)	Ba(14)-O(24)#1	2.87(3)
Ba(6)-O(15)#10	2.99(4)	Ba(14)–O(30)#18	2.92(4)
Ba(6)-O(24)#10	3.04(4)	Ba(14)-O(34)#18	2.97(5)
Ba(6)-O(21)#10	3.10(4)	Ba(14)-O(33)#18	3.10(4)
Ba(6)-O(19)#10	3.17(4)	Ba(14)-O(29)#18	3.10(4)
		Ba(14)-O(26)#1	3.15(4)
Ba(7)-O(17)#1	2.53(4)	Ba(15)-O(15)#3	2.68(3)
Ba(7)-O(1)	2.64(6)	Ba(15)-O(3)#8	2.75(4)
Ba(7)-O(13)	2.63(5)	Ba(15)-O(27)#6	2.76(4)
Ba(7)–O(6)	2.92(3)	Ba(15)-O(26)#6	2.85(3)
Ba(7)–O(3)	3.00(4)	Ba(15)-O(14)#3	2.88(4)
Ba(7)-O(9)	3.12(4)	Ba(15)-O(29)#6	2.91(3)
Ba(7)-O(12)	3.13(4)	Ba(15)-O(2)#8	2.95(4)
Ba(7)–O(8)	3.24(4)	Ba(15)-O(17)#3	3.00(4)
Ba(8)-O(32)#1	2.58(4)	Ba(15)-O(5)#8	3.01(4)
Ba(8)-O(8)#1	2.62(4)		, ,
Ba(8)-O(10)#8	2.70(4)	Ba(16)-O(23)#13	2.71(4)
Ba(8)-O(19)#1	2.70(4)	Ba(16)-O(35)#4	2.83(4)
Ba(8)-O(34)#6	2.76(4)	Ba(16)-O(11)	2.84(3)
Ba(8)-O(22)#3	2.79(4)	Ba(16)–O(33)#4	2.94(4)
Da(0)=0(22)#3	2.77(4)	Ba(16)-O(9)	2.95(4)
		Ba(16)-O(21)#13	2.97(4)
	(cont	inued)	(continued)

· · · · · · · · · · · · · · · · · ·	_	
Tabelle	3	(continued)

Tabelle 3 (continued)		
Ba(17)-O(28)#1	2.62(4)	
Ba(17)-O(35)#6	2.79(4)	
Ba(17)-O(4)#6	2.85(4)	
Ba(17)-O(26)#19	2.87(4)	
Ba(17)-O(36)#6	2.90(4)	
Ba(17)-O(3)#6	3.06(4)	
Ba(17)-O(30)#1	3.06(4)	
Ba(17)–O(31)#1	3.11(4)	
,	, ,	
Ba(18)-O(4)#5	2.48(4)	
Ba(18)-O(16)#17	2.71(5)	
Ba(18)-O(11)#17	2.75(4)	
Ba(18)-O(2)#3	2.81(4)	
Ba(18)-O(12)#17	2.86(4)	
Ba(18)-O(6)#5	3.10(4)	
Ba(18)-O(15)#17	3.10(4)	
Ba(18)–O(7)#5	3.12(3)	
Al(1)-O(2)	1.66(5)	
Al(1)-O(1)	1.77(5)	
Al(1)-O(36)	1.81(5)	
Al(1)-O(3)	1.88(5)	
Al(2)-O(5)	1.70(4)	
Al(2)-O(6)	1.71(5)	
AI(2)–O(3)	1.80(5)	
Al(2)-O(4)	1.80(4)	
	1.00(4)	
Al(3)-O(9)	1.64(5)	
Al(3)-O(8)	1.72(5)	
Al(3)–O(6)	1.82(4)	
Al(3)-O(7)	1.92(4)	
Al(4)-O(10)	1.76(4)	
Al(4)-O(12)	1.79(6)	
Al(4)-O(11)	1.78(4)	
Al(4)-O(9)	1.82(5)	
Al(5)-O(13)	1.67(5)	
Al(5)-O(15)	1.78(5)	
Al(5)-O(14)	1.77(4)	
Al(5)-O(12)	1.81(6)	
Al(6)-O(18)	1.72(5)	
Al(6)-O(17)	1.76(4)	
Al(6)-O(16)	1.81(4)	
Al(6)-O(15)	1.89(5)	
Al(7)-O(21)	1.65(5)	
Al(7)-O(19)	1.72(5)	
Al(7)-O(18) Al(7)-O(20)	1.79(5) 1.82(5)	
Al(8)-O(22)	1.73(4)	
Al(8)-O(21)	1.79(5)	
Al(8)-O(23)	1.78(4)	
Al(8)-O(24)	1.85(6)	
Al(9)-O(26)	1.61(4)	
Al(9)-O(25)	1.72(5)	
Al(9)-O(24)	1.80(5)	
Al(9)-O(27)	1.95(5)	
Al(10)-O(28)	1.68(4)	
Al(10)-O(27)	1.69(5)	
Al(10)-O(29)	1.75(4)	
Al(10)-O(30)	1.74(5)	
Al(11)-O(33)	1.72(6)	
Al(11)–O(31)	1.76(4)	
Al(11)-O(30)	1.80(5)	
Al(11)-O(32)	1.83(5)	(continued)

Tabelle 3 (continued)

Al(12)-O(34)	1.68(4)
Al(12)-O(35)	1.68(4)
Al(12)-O(33)	1.72(6)
AI(12)-O(36)	1.90(5)
Symmetrieoperationen	
$\#1-x+\frac{1}{2}, -y+1, z-\frac{1}{2}$	#2-x, $y-\frac{1}{2}$, $-z+\frac{1}{2}$
#3 $x + \frac{1}{2}$, $-y + \frac{1}{2}$, $-z + 1$	#4 $x + \frac{1}{2}$, $-y + \frac{3}{2}$, $-z + 1$
#5 $-x+\frac{1}{2}$, $-y+1$, $z+\frac{1}{2}$	#6 $x+1$, y , z
#7 $x - \frac{1}{2}$, $-y + \frac{1}{2}$, $-z + 1$	#8 $-x+1$, $y-\frac{1}{2}$, $-z+\frac{1}{2}$
#9 $-x+\frac{3}{2}$, $-y+1$, $z+\frac{1}{2}$	#10 $-x+1$, $y+\frac{1}{2}$, $-z+\frac{3}{2}$
#11 $-x + \frac{3}{2}$, $-y + 1$, $z - \frac{1}{2}$	#12 $x + \frac{1}{2}$, $-y + \frac{1}{2}$, $-z$
#13 $-x$, $y+\frac{1}{2}$, $-z+\frac{3}{2}$	#14 $x-\frac{1}{2}$, $-y+\frac{3}{2}$, $-z+2$
#15 $x - \frac{1}{2}$, $-y + \frac{3}{2}$, $-z + 1$	#16 -x, $y - \frac{1}{2}$, $-z + \frac{3}{2}$
#17 $-x+1$, $y-\frac{1}{2}$, $-z+\frac{3}{2}$	#18 -x, $y + \frac{1}{2}$, $-z + \frac{1}{2}$
#19 $-x+1$, $y+\frac{1}{2}$, $-z+\frac{1}{2}$	#20 $x-1$, y , z

besserte die Verfeinerung entsprechend. Die so für 2 bestimmten Parameter wurden als Startwerte für die Verfeinerung von 1 benutzt [11], was augenblicklich gelang. Die Ergebnisse der Kristallstrukturbestimmung von 1 sind in den Tabellen 2-4 zusammengefaßt. (Weitere Informationen zur Kristallstrukturbestimmung können beim Fachinformationszentrum Karlsruhe, Gesellschaft für Wissenschaftlich-Technische Information m.b.H., W-76433 Eggenstein-Leopoldshafen, unter Angabe der Hinterlegungsnummer CSD-58180, des Autors und Zeitschriftenzitats angefordert werden.) Die Strukturparameter von 2 differieren nur wenig bezogen auf die relativ hohen Standardabweichungen, das Strukturmodell kann aus der Tabelle 1 leicht durch Ersetzen der Atome Ba(3), Ba(5), Ba(8) und Ba(11) gegen Ca erhalten werden.

3. Strukturbeschreibung und Diskussion

Die in Tabelle 2 wiedergegebenen Parameter machen sehr schnell deutlich, weshalb die Beugungsdaten von 1 eine hochgradig kubische Pseudosymmetrie aufweisen und in welcher Form die entscheidende Hilfe zur Strukturaufklärung aus der Strukturlösung von 2 resultierte. Betrachtet man nur einmal die Punktlagen der 18 Ba-Atome, die ja den überwiegenden Teil der Streukraft verkörpern, so erkennt man, daß 17 von ihnen in guter Näherung in der Raumgruppe Pa3 untergebracht werden können. Hierzu können für die 48 Atome Ba(7)-Ba(18) zwei allgemeine Lagen (24d) verwendet werden, die die Besetzung eines jeden ganzahligen Vielfachen von 1/8 entlang der drei Raumrichtungen beschreiben, gleichzeitig aber die Bedingung $x \neq y \neq z$ erfüllen. Auch die verbleibenden Atome Ba(1)-Ba(6) können mit Ausnahme von Ba(5) in $Pa\bar{3}$ näherungsweise angeordnet werden: Ba(3) auf 4b- $(\sim \frac{1}{2}, \frac{1}{2}, \frac{1}{2})$ sowie die verbleibenden Atome auf &c-

Tabelle 4
Bindungswinkel (°) an den Al-Atomen des Al₁₂O₃₆-Rings in 1 (Standardabweichungen in Klammern)

dardabweichungen in Klammern)	
O(2)-Al(1)-O(1)	125(3)
O(2)-Al(1)-O(1) O(2)-Al(1)-O(36)	111(2)
	105(2)
O(1)-Al(1)-O(36)	
O(2)-Al(1)-O(3)	105(2)
O(1)-Al(1)-O(3)	104(2)
O(36)–Al(1)–O(3)	104(2)
O(5)-Al(2)-O(6)	106(2)
O(5)-Al(2)-O(3)	105(2)
O(6)-Al(2)-O(3)	109(2)
O(5)-Al(2)-O(4)	122(2)
O(6)-Al(2)-O(4)	107(2)
O(3)-AI(2)-O(4)	108(2)
0(0) 41(3) 0(0)	104(2)
O(9)-Al(3)-O(8)	104(2)
O(9)-Al(3)-O(6)	109(2)
O(8)-Al(3)-O(6)	110(2)
O(9)-Al(3)-O(7)	115(2)
O(8)-Al(3)-O(7)	112(2)
O(6)-Al(3)-O(7)	107(2)
O(10)-Al(4)-O(12)	109(2)
O(10)-Al(4)-O(11)	118(2)
O(12)-Al(4)-O(11)	103(2)
O(10)-Al(4)-O(9)	105(2)
O(12)-Al(4)-O(9)	111(2)
O(11)-Al(4)-O(9)	111(2)
	` `
O(13)-Al(5)-O(15)	105(2)
O(13)-AI(5)-O(14)	127(2)
O(15)-AI(5)-O(14)	102(2)
O(13)-Al(5)-O(12)	105(2)
O(15)-Al(5)-O(12)	106(2)
O(14)-Al(5)-O(12)	111(2)
O(18)-Al(6)-O(17)	109(2)
O(18)-Al(6)-O(16)	113(2)
O(17)-AI(6)-O(16)	118(2)
O(18)-Al(6)-O(15)	110(2)
O(17)-Al(6)-O(15)	103(2)
O(16)-Al(6)-O(15)	103(2)
O(21)AI(7)-O(19)	102(2)
O(21)-AI(7)-O(19) O(21)-AI(7)-O(18)	108(2)
O(19)-AI(7)-O(18)	104(2)
O(19)=A(7)=O(18) O(21)=Al(7)=O(20)	
O(21)- $AI(7)$ - $O(20)O(19)$ - $AI(7)$ - $O(20)$	116(2) 117(2)
O(19)-Ai(7)- $O(20)O(18)$ -Ai(7)- $O(20)$	109(2)
O(22)-Al(8)- $O(21)$	104(2)
O(22)-Al(8)- $O(23)$	120(2)
O(21)-AI(8)-O(23)	110(2)
O(22)–AI(8)–O(24)	104(2)
O(21)-Al(8)- $O(24)$	109(2)
O(23)- $Al(8)$ - $O(24)$	109(2)
O(26)-Al(9)-O(25)	131(2)
O(26)-Al(9)-O(24)	111(2)
O(25)-Al(9)-O(24)	100(2)
O(26)-Al(9)-O(27)	104(2)
O(25)-Al(9)-O(27)	102(2)
O(24)-Al(9)-O(27)	107(2)
O(28) AI(10) O(27)	111(2)
O(28)-Al(10)-O(29)	118(2)
O(27)-Al(10)-O(29) O(28)-Al(10)-O(30)	102(2) 108(3)
O(20)-14(10)-O(30)	, ,
	(continued)

Tabelle 4 (continued)

O(27)- $Al(10)$ - $O(30)$	107(2)	
O(29)-Al(10)-O(30)	110(2)	
O(33)-Al(11)-O(31)	118(2)	
O(33)–Al(11)–O(30)	110(2)	
	110(2)	
O(31)-Al(11)-O(30)	109(2)	
O(33)-Al(11)-O(32)	107(2)	
O(31)-Al(11)-O(32)	111(2)	
O(30)-Al(11)-O(32)	101(2)	
O(34)Al(12)-O(35)	121(2)	
O(34)-Al(12)-O(33)	110(2)	
O(35)-Al(12)-O(33)	113(2)	
O(34)-Al(12)-O(36)	102(2)	
O(35)-Al(12)-O(36)	100(2)	
O(33)-Al(12)-O(36)	108(2)	

Punktlagen (x, x, x). Allein Ba(5) bildet eine Ausnahme, da in 1 und 2 die dazu zentrosymmetrische Position $(\sim \frac{1}{4}, \frac{1}{4}, \frac{1}{4})$ nicht besetzt ist, was aber für 8c in Pa3zwingend ist. Dies verdeutlicht den azentrischen Charakter der Struktur und als direkte Folge, daß eine Beschreibung im kubischen Kristallsystem allenfalls noch in der Untergruppe P2₁3 möglich wäre, in der die Punktlage 8c unter Verlust des Inversionszentrum in zwei Positionen (4a) aufspaltet. Daß aber ein weiterer Abstieg nach $P2_12_12_1$ nötig ist, kann ebenfalls an den Erdalkalimetallpunktlagen in Tabelle 2 gezeigt werden. Für 2 sieht man dies besonders gut an den Atomen EA(10)-EA(12). Die Koordinaten können nämlich zwar in grober Näherung zu einer allgemeinen 12b-Punktlage in P2₁3 zusammengefaßt werden (zyklische Permutation von $\sim \frac{5}{8}, \frac{7}{8}, \frac{3}{8}$), die geordnete Verteilung von Ba und Ca durchbricht aber die pseudokubische Symmetrie (Ba(10), Ca(11), Ba(12)). Der große Unterschied im Streuvermögen von Ba und Ca in dieser pseudokubischen Anordnung machte sich also in 2 hinreichend bemerkbar, wogegen er sich in 1 auf die Abweichungen der numerischen Werte zueinander reduziert, bei y(Ba(10)) immerhin $80\sigma(y)$ verglichen mit x(Ba(11)).

Die Beschreibung der Struktur von 1 kann wieder mit Hilfe einer großen, aus $4 \times 4 \times 4$ Perowskitsubzellen zusammengesetzten Zelle erfolgen (vgl. Abschnitt 1). Schon die Verteilung der Ba-Atome zeigt die Verschiedenheit zur Struktur des Ca₃Al₂O₆, in der nicht alle Subzellenzentren besetzt sind. In 1 ist dies der Fall, womit 64 der 72 Ba-Atome untergebracht sind. Auf Positionen, die formal als Ecken von Subzellen zu betrachten sind, befinden sich die Atome Ba(3) und Ba(5). Die Ba(3)-Atome besetzen zusätzlich die elementarzellenmitte sowie die Kantenhalbierenden, die Ba(5)-Atome bilden für sich gesehen innerhalb der Zelle ein großes Tetraeder um deren Mittelpunkt und verdeutlichen in dieser Betrachtungsart den azentrischen Charakter der Struktur. Abb. 2 zeigt die Ba-Verteilung in idealisierter Weise. Sie läßt nun auch leicht verstehen, warum Antipov u.a. [4] bei ihrer Beschreibung der Struktur in $Pa\bar{3}$ für die achtzählige Ba-Punktlage $\frac{3}{4}$, $\frac{3}{4}$, eine Splitverfeinerung vornahmen, da sie in der gefalteten, zentrosymmetrischen Struktur die Streukraft von vier Ba-Atomen auf acht Lagen zu verteilen suchten.

Auch die Verteilung der Al- und O-Atome unterscheidet sich vom Ca₃Al₂O₆-Strukturtyp in grundlegender Weise. Statt der sesselförmig angeordneten, aus eckenverknüpften AlO₄-Tetraedern bestehenden Sechsringe werden in 1 Zwölfringe beobachtet. Abbn. 3 und 4 zeigen dies auf zweierlei Arten: als Molekülbild mit den in den Tabellen 2 und 3 kompatiblen Atombezeichnungen und in Polyederdarstellung, die die Verwandtschaft zur Ringkonformation in der Schwefelmodifikation S₁₂ verdeutlicht. Vier solcher Ringe ordnen sich pro Elementarzelle mit ihrem Mittelpunkt um den Zellenursprung und die symmetrieäquivalenten Flächenmitten so an, daß neben den die 64 Perowskitsubzellen zentrierenden Ba-Atome auch die acht, formal auf Subzellenecken angeordneten Ba-Atome Platz finden (siehe Abb. 5).

Die sich aus dieser Anordnung ergebenden Koordinationszahlen für die Erdalkaliatome (berücksichtigt bis 3.3 Å) sind: CN=8 für die in beiden Strukturen mit Ba-Atomen besetzten Lagen (Ausnahme Ba(15), CN=9) und CN=6 für Ba(16) und für die vier Positionen in 1 und 2, die in 2 mit Ca-Atomen besetzt sind. Die vier letzteren Eralkaliatome zentrieren verhältnismäßig wenig verzerrte Oktaeder, was ihrer formalen Funktion als Subzelleneckatome gerecht wird. Dagegen weist Ba(16) eine schlecht zu beschreibende Sechsfachkoordination auf, die wie die Koordinationspolyeder aller restlichen Ba-Atome als verzerrte Defektkuboktaeder aufgefaßt werden können. Dies reflektiert eindrucksvoll die Rolle dieser Ba-Atome als große Teilchen einer modifizierten Perowskitstruktur. Abschließend soll gezeigt werden, warum im System $Ba_{3-x}Ca_xAl_2O_6$ bei x=0.667 eine geordnete Phase auftritt, die dem zufolge richtiger mit Ba₇Ca₂Al₆O₁₈ zu bezeichnen ist. Dies liegt im deutlich unterschiedlichen Platzangebot für die Erdalkaliatome je nach dem, ob sie sich in eingeengten oktaedrischen Lücken befinden (EA(3), EA(5), EA(8) und EA(11)) oder ob ihnen eine

defektkuboktaedrische Umgebung zur Verfügung steht, die, wie Tabelle 3 zeigt, neben normalen Ba-O-Abständen (ungefähr 2.70 Å) auch wesentlich längere Abstände aufweist. Der Unterschied im Ionenradius von Ba²⁺ und Ca²⁺ reicht offensichtlich aus, daß im Ba₃Al₂O₆ eine Substitution mit Ca nur bis x=0.667 möglich ist, und daß sie ausschließlich in den kleinen Lücken stattfindet. Ca₃Al₂O₆ und Sr₃Al₂O₆ dagegen kristallisieren in einem eigenen, gemeinsamen Strukturtyp. Wir werden in Kürze über Einkristalluntersuchungen am System Sr_{3-x}Ca_xAl₂O₆ berichten [8], wo vollkommene Mischbarkeit besteht, und zeigen, wie auch dort, je nach Größe der Wertes x, die sechs unterschiedlich großen Lücken für die Erdalkaliatome der Reihe nach substituiert werden.

Dank

Frau E.-M. Peters sei herzlich für die Anfertigung der Abbildungen [12] gedankt, den Herren Professor Hk. Müller-Buschbaum und M. Hartweg danken wir für hilfreiche Ratschläge.

Literatur

- [1] P. Mondal und J.W. Jeffery, Acta Crystallogr. B, 31 (1975) 689.
- [2] S. Manzel, Staatsarbeit, Universität Münster, 1976.
- [3] B.C. Chakoumakos, G.A. Lager und J.A. Fernandez-Baca, Acta Crystallogr. C, 48 (1992) 414.
- [4] E.V. Antipov, L.N. Lykova, M.V. Paromova, O.N. Rozanova und L.M. Kovba, Koord. Khim., 13 (1987) 1119.
- [5] M. Hartweg, B. Nick und L. Walz, Acta Crystallogr. C, 46 (1990) 2001.
- [6] L. Walz und F. Lichtenberg, Acta Crystallogr. C, 49 (1993) 1268.
- [7] M. Heinau, R. Baumann, B. Nick, M. Hartweg und L. Walz, Z. Kristallogr., 209 (1994) 418.
- [8] B. Nick, M. Heinau und L. Walz, in Vorbereitung.
- [9] G.M. Sheldrick, SHELXS86 Program for Structure Solution, Universität Göttingen, 1986.
- [10] G.M. Sheldrick SHELX-76 Program for Structure Determination, University of Cambridge, 1976.
- [11] G.M. Sheldrick, SHELXL-93 *Program for Structure Determination*, Universität Göttingen, 1993.
- [12] G.M. Sheldrick, SHELXTL-PLUS PC-Version 4.2 für Ms-Dos, Siemens Analytical X-ray Instruments, Madison, USA, 1990.